首页  >    其他

(2012•永安市质检)如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴交于点D,点C的坐标为(-3,4).(1)点A的坐标为;(2)求过点A、O、C的抛物线解析式

2019-12-31

(2012•永安市质检)如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴交于点D,点C的坐标为(-3,4).
(1)点A的坐标为______;
(2)求过点A、O、C的抛物线解析式,并求它的顶点坐标;
(3)在直线AB上是否存在点P,使得一点A、O、P为顶点的三角形与△COD相似?若存在,求出点P的坐标;若不存在,请说明理由.

优质解答

(1)∵四边形OABC为菱形,
∴BC∥OA,OC=OA=BC,
∵OD⊥OA,
∴OD⊥BC,
∵C(-3,4),
∴CD=3,OD=4,
∴OC=
OD2+CD2
=5,
∴A(5,0).
故答案为:(5,0);

(2)设抛物线的解析式为y=ax(x-5),
把C(-3,4)代入得24a=4,
解得a=
1
6

则y=
1
6
x(x-5)=
1
6
x2-
5
6
x.
∵y=
1
6
(x-
5
2
2-
25
24

∴顶点坐标为(
5
2
,-
25
24
);

(3)∵∠OCD=∠OAB,∠ODC=90°,OC=5,OD=4,CD=3,
∴分两种情况:
①当∠AOP=∠ODC=90°(点P在y轴上)时,△APO∽△COD,
AO
CD
=
PO
OD
,即
5
3
=
PO
4

解得PO=
20
3
,此时P(0,
20
3
);
②当∠OPA=∠ODC=90°时,△AOP≌△COD,则OP=OD=4,
过点P作PM⊥x轴,垂足为M,则△OPM∽△OCD,
PM
CD
=
OM
OD
=
OP
OC
,可得PM=
12
5
,OM=
16
5
,此时P(
16
5
12
5
);
综上所述,存在符合要求的点P,它的坐标为(0,
作业帮用户 2017-10-03 举报
问题解析
(1)由菱形的性质得OC=OA=BC,则OD⊥BC,由勾股定理得出OC,即可求出点A的坐标;
(2)设抛物线的解析式为y=ax(x-5),把C(-3,4)代入,解方程求得a的值,即可得出抛物线的解析式;
(3)由菱形的对角相等可知∠OCD=∠OAB,则以点A、O、P为顶点的三角形与△COD相似时,分两种情况:①当∠AOP=∠ODC=90°(点P在y轴上)时,△APO∽△COD;②当∠OPA=∠ODC=90°时,△AOP≌△COD,根据相似三角形的性质即可求解.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题是一道二次函数的综合题,考查了菱形的性质、用待定系数法求二次函数的解析式以及相似三角形的性质,注意分类讨论思想的运用.
我是二维码 扫描下载二维码